Discourse and Dialogue Models

James Pustejovsky

August 27, 2020

Slides thanks to Staffan Larsson

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Why build dialogue systems?

- Theoretical purpose: test theories
 - e.g. what kind of information does an agent need to keep track of in order to be able to participate in a dialogue?
 - However, complex system with many components how to evaluate
- Practical purpose: human-computer interaction

Why spoken interaction?

Spoken interaction is the natural way for humans to interact

- computers should adapt to humans rather than the other way around
- important to enable systems to interact in a natural way
- Language can be used to convey any message, at any time
 - On a screen, you can only push the buttons shown
 - Less effort for user, who can just say what's on her mind...
 - ...but system then needs to be able to deal with most of the ways that the dialogue may unfold
- Users want hands-free and/or eyes-free use
 - Especially in in-vehicle situations

History of dialogue systems

- ELIZA (Weizenbaum 1966)
 - text dialogue
 - simulated psychoanalyst
- SHRDLU (Winograd 1972)
 - written dialogue
 - control simulated robot in a blocks world
- TRAINS (Allen et al 1991)
 - spoken dialogue
 - joint planning task
- CSLU Toolkit (McTear 1993)
 - platform for implementing dialogue system applications
 - simple dialogue manager

- Philips train timetable system (Aust et al 1994)
 - speech over phone
 - first deployed system
- Linguatronics (1996)
 - in-car spoken dialogue
 - dialing etc
- VoiceXML (W3C 2000)
 - general platform
 - form-filling dialogue
- Siri (Apple 2009)
 - smartphone-based
 - multimodal
- API.AI, Amazon Alexa (2015)
 - proprietary platforms open for third party development open

Two types of methods in Computational Linguistics

- Rule-based
- Statistical/Machine Learning

Rule-based methods

Example: Interpret English commands in infotainment system

- create a lexicon for English
- write grammar rules for English in the infotainment domain
- write rules relating English sentences to a semantic representation (intents and entities)

Statistical/Machine Learning methods

Example: Interpret English commands in infotainment system

- collect lots of examples of English sentences from the infotainment domain
- annotate sentences with their meanings (intents and entities)
- use machine learning techniques to produce statistical models correlating English sentences with intents and entities

Comparing rule-based and statistical methods

- Rule-based methods get more exact and correct results, but it can take a lot of work to get them to cover enough data
- Statistical methods cover a lot more data, but they sometimes get things very wrong, in ways that we do not understand

Hybrid systems

- Hybrid systems attempt to combine both rule-based and statistical methods
- ... but there are many open research questions concerning the best way to combine the two approaches

Dialogue systems architecture

Natural Language Understanding (NLU)

Extract relevant meaning from text

- In many systems, meaning consists of "intents" (requested actions) and entities
- In general in natural language, much more complex meanings can be conveyed: relations, negation, modality, counterfactuals, ...
- Until around 2000, NLU was mostly rule-based
 - A single grammar often used both to govern ASR and to extract meaning from text
- NLU is increasingly based on machine learning, generalising from examples

Dialogue Management (DM)

- Over the last 5-10 years there has been a focus in academia on statistical methods for dialogue management
- However, the complexity of dialogue management have lead to doubts about the prospects of such methods
- > All commercial dialogue managers are more or less rule-based

Natural Language Generation (NLG)

- Convert output from DM into text
- NLG has so far received much less attention that ASR and NLU
- Many current commercial systems conflate DM and NLG, using simple language-templates with slot values filled in
 - "Calling \$NAME's \$NUMTYPE number"
- Research has produced more powerful generation techniques that are not being used commercially yet.
- Current approach works okay for simple kinds of dialogue and for syntactically simple languages such as English
- When moving into more complex domains and when localising to more complex languages (e.g. Turkish), NLG will become an issue

Text-To-Speech (TTS)

- TTS has improved significantly over the last 30 years, reaching almost natural voice quality
- However, there is still plenty of room for improvement
- For example, control over intonation is still a problem
- Example
 - "What city do you want to go to?"
 - "London"
 - # "What city do you want to go from?"

Text-To-Speech (TTS)

- TTS has improved significantly over the last 30 years, reaching almost natural voice quality
- However, there is still plenty of room for improvement
- For example, control over intonation is still a problem
- Example
 - "What city do you want to go to?"
 - "London"
 - "What city do you want to go from?"
- Generating correct intonation often requires some level of understanding of what is being said, and of what has been said before

Multimodality

- For practically useful dialogue systems, the connection between traditional touch-screen interaction and spoken interaction is important
- Current state of the art in industry is that the user has to choose between "normal" touch-screen interaction and spoken interaction (with a different GUI)
- Problems with this approach:
 - Forces users to abandon what they know for something less known
 - Not possible to mix spoken interaction and touch-screen interaction freely
 - Sometimes, you have to look at the screen
- Instead, systems should enable
 - The same touch-screen interaction regardless of whether speech is enabled or not
 - Users can switch modality anytime
 - Never necessary to look at the screen

イロト 不得 とくほと くほとう ほ

Why is dialogue management important?

- Without a DM, there is no dialogue.
- The user has to give all information that the system needs in a single utterance, which in some cases may be very difficult and cognitively demanding
 - "I want to book a flight from Gothenburg to London on September 2 in the afternoon, coming back on the 10th in the morning, for 2 adults and 2 children aged 5 and 8, with no stopovers and preferably going to Heathrow airport, economy class."
- ▶ If any information is left out, there is no way to supply it later.

Why is dialogue management important?

- A dialogue manager makes it possible to have coherent exchanges consisting of several turns
- This means that the user does not have to say everything at once ("the truth, the whole truth and nothing but the truth")
- Instead, the user can say what's on her mind, and the system will ask for additional needed information

Dialogue Management methods

- Four types of dialogue managers:
 - Finite state-based
 - Form-filling
 - Plan-based
 - Information State

Finite state-based DM

30/48

Finite state-based DM

- Represents dialogue flow using a finite state machine
 - States: questions to the user
 - Transitions: user responses and resulting actions
 - Also stores answers in variables (<DATE> etc) (not pure finite state)
- Works for system initiative ("single initiative") dialogue
 - System has all the initiative
 - Tends to ignores or misinterpret anything which is not a direct answer to a system question

Finite state-based DM

- However, human-human conversation is very often "mixed initiative"
 - User may provide unrequested information
 - User may ask a question in response to a question
 - ▶ ...
- ► To deal with mixed initiative for n questions, ~ 7n² transitions are needed (for n = 20, 2800 states)
- These all need to be created and maintained by the dialogue developer

Form-based dialogue management

- ► Form = slots and values
- Relies on the structure of a form to guide the dialogue.
- Provides some aspects of mixed initiative dialogue
- Asks the user questions to fill slots in the frame
 - but allow the user to guide the dialogue by giving information that fills other slots in the frame
- Each slot may be associated with a question to ask the user, following type:
 - ORIGIN CITY "From what city are you leaving?"
 - DESTINATION CITY "Where are you going?"
 - DEPARTURE TIME "When would you like to leave?"
 - ARRIVAL TIME "When do you want to arrive?"

Form-based dialogue management

- DM asks questions to the user, filling any slot that the user specifies...
- ...until it has enough information to perform a data base query, and then return the result to the user
- If the user happens to answer two or three questions at a time, the system has to fill in these slots and then remember not to ask the user the associated questions for the slots.
- Does away with the strict constraints that the finite-state manager imposes

Form-based dialogue management

VoiceXML

- Voice Extensible Markup Language
- an XML-based dialogue design language released by the W3C,
- very simple mixed-initiative
- form-based architecture
- grammar-based ASR and NLU
- Most if not all systems on the market are more or less form-based (Siri, Google Assistant, etc.)
 - Statistical NLU has replaced grammars

Plan-based DM

- Popular 1980's-1990's
- View dialogue as planning and plan-recognition
- Highly general approach, can handle very complex dialogues (in principle)
- However:
 - Adapting such approaches to individual domains is very labour-intensive
 - Systems are very brittle and tend to break easily

Information State approach

- Goal: explore the space between finite-state/form-filling approaches (robust but limited) and plan-based approaches (capable but brittle and labour-intensive)
- Key component: a rich Information State, representing the state of the dialogue so far
- Deal with dialogue beyond form-filling in a robust way:
 - Dealing with multiple forms
 - Comparing alternatives ("negotiative dialogue")
 - General and versatile approaches to confirmation, turn-management and other basic dialogue phenomena
 - Instructional dialogue (e.g. technical manuals)
 - Problem-solving dialogue (e.g. putting together an itinerary)
- Important principle: "Separation of concerns"

Information State approach: separation of concerns

Keep the following types of knowledge separate:

- How to deal with the domain (domain knowledge)
- How to speak about the domain (linguistic knowledge)
- How to deal with dialogue (DM)
- Advantages
 - Simpler and faster development of new applications/domains, since only domain knowledge needs to be added
 - Simpler and faster localisation of applications to new languages, since only language knowledge needs to be added
 - ► Cumulative development of dialogue management since all DM improvements become available in future applications ⇒ high quality DM across applications

Information State approach: Multiple forms

Some domains require the ability to deal with multiple forms, e.g. for a travel agency application:

- general route information ("Which airlines fly from Boston to San Francisco?")
- information about airfare practices ("Do I have to stay a specific number of days to get a decent airfare?")
- questions about car or hotel reservations
- Since users may want to switch between forms (in principle at any time), the system must be able to
 - disambiguate which slot of which form a given input is supposed to fill
 - switch dialogue control to that form
 - return control to previous form once the "embedded" form is done

	Industry	Academia
1990	Interactive Voice Response	Rule-based systems
	 Finite state automata (FSA) 	 Finite State-based, Form-filling, Plan-based DM
		Rule-based NLU
		Low quality ASR
2000	VoiceXML	Information State Approach to DM
	 Finite-state-based, form-filling dialogue 	 Explore middle ground between form-filling and plan-based DM
	Rule-based NLU	E.g. negotiative dialogue
	Grammar-based ASR	 Separation of concerns
2010	Conversational assistants	Machine learning approaches
	 Form-filling dialogue 	► POMDP
	Rule-based DM	Reinforcement learning
	ASR gets a lot better	Back to form-filling dialogue
		Hardware advances for ML
2017	Development platforms	The pendulum swings back?
	Form-filling dialogue	Increased interaction with
	Rule-based DM	Industry
	 ML for NLU, increased robustness 	 Trend: need to move beyond form-filling

Machine learning vs. rule-based methods for dialogue systems

- Machine learning has proven useful for ASR and NLU, which are about extracting a meaningful message from a noisy signal
- Less useful for producing coherent responses (DM, NLG)
 - Machine learned methods are inherently unpredictable, but we often want the output from the system to be predictable (and debuggable)

Machine learning vs. rule-based methods for DM?

- Dialogue management has a huge state space compared to ASR and NLG, so a lot of (expensive) data is needed for machine learning
- Has proven very hard to get beyond form-based DM
- Keynotes at recent major conferences (SigDIAL, Interspeech) have made a case for revising rule-based DM and try to combine with ML, rather than trusting ML to solve everything

The future: Academia

- The pendulum is swinging back from purely ML approaches to DM, and there will be more work on hybrid approaches combining rule-based and ML methods for DM
- Theoretical work on human-human dialogue has made progress, and this needs to feed into DM research
- With more complex dialogue types comes higher demands on NLG and information presentation
- Work on robotics and dialogue will move towards embodied and situation-aware dialogue systems that can see what the user can see, and talk about it
- As systems become exposed to more diverse and less predictable environments, they will need to be able to learn language from users; foundational research is underway

The future: Industry

- Dialogue is coming into view, but has so far not received a lot of attention compared to ASR and NLU; this will eventually change
 - To some extent, dialogue can help with NLU problems, but this has yet to be exploited
- There will be a race to handle more complex types of dialogue
- Progress has been made on tools for building simple apps/skills; these need to be extended to work with more complex dialogue types
- ► For in-vehicle systems, managing cognitive load will be important
 - ► There is relevant academic research, e.g. about interrupting and resuming dialogue, and system-initiated dialogue

Natural Language Understanding For Dialogue Systems

User: "I need a train ticket to Copenhagen."

```
[ intent: book_travel,
  slots: {
    destination: "Copenhagen",
    means_of_transport: train
  }]
```

System: "Okay, at what time?"
Outline

- NLU vs ASR
- NLU in relation to NLP in general
- Desired properties of NLU for DS
- Implementing an NLU component
- Evaluating and improving performance
- Current research challenges

NLU vs ASR: State of the Art

Log scale

Speech-recognition word-error rate, selected benchmarks, %

How about NLU?

- No established benchmark
- ... but various benchmarks for related NLP problems
- In existing dialog systems, NLU often performs worse than ASR

Example of state-of-the-art NLU

Related NLP problems

Intent classification

Sentiment analysis

Semantic role labeling

Semantic similarity estimation

POS tagging

Coreference resolution

Parsing

Entity extraction

Irony detection

Desired properties of NLU for DS

- Output mappable onto dialog manager's input representation (e.g. as intents and slots)
- Tolerates noise (e.g. disfluencies, ASR misrecognitions)
- Estimates confidence / probability
- Handles semantic ambiguity
- Can generalize from given examples to unseen input

Example: Noisy input

User: "is the train from Göteborg late?" ASR: "the train from Göteborg yet"

{ intent: book_travel, slots: { departure: "Göteborg" }, confidence: 0.64 },

{ intent: get_delay_info, slots: { departure: "Göteborg" }, confidence: 0.47 },

Example: Ambiguity

```
User: "next"
 { intent: next_audio_track,
  slots: {},
  confidence: 0.64 },
 { intent: next_cooking_instruction,
  slots: {},
  confidence: 0.36 }
```

Uncertainty can be correctly disambiguated by dialogue manager, e.g. by using dialogue context.

Semantic representation

- Current paradigm:
 - Intents (requests and questions)
 - Slot values (answers)
- May support multiple hypotheses
- May contain confidence/probability

Semantic representation "call John" { 'entities': [{'entity': 'predicate:selected_contact_to_call', 'value': 'John', 'confidence': 0.92}], 'intent_ranking': [{'confidence': 0.65, 'name': 'action::call'}, {'confidence': 0.10, 'name': 'question::phone_number'}, }

Semantic representation

- Not supported by current paradigm:
 - Other kinds of dialogue acts, e.g. feedback ("okay")
 - Polarity / negations ("not Paris")
 - Combined intents ("turn off the lights and play some disco music")
 - Anaphora ("call him")
- Can be worked around to some extent
 - E.g. special intents for other dialogue acts and negations

Implementing an NLU component

- Use existing service
 - DialogFlow, Wit.ai, IBM Watson Assistant, Amazon Lex, Microsoft Luis, Recast.ai …
- Use software library
 - NLTK, Rasa NLU, Spacy, Duckling, scikit-learn ...
- Build from scratch

Implementing an NLU component

- Additional option: Combine NLU with DM and NLG in a trainable end-to-end DS
- Typical approach: Train neural network on input and output utterances
- Examples: Wen et al (2016), Google Duplex
- Very difficult to design or control
- May be feasible for very small domains or social conversation

Existing NLU service: Demo

• https://wit.ai

Using existing NLU services

- Pros:
 - Easy to get started
 - Developer-friendly interfaces
- Cons:
 - Black boxes: Unclear how the NLU works
 - Difficult to improve / extend
 - Limited semantic representation
 - Behaviour may suddenly change

Building an NLU: Approaches

- Rule-based
 - Context-free grammar
 - Regular expressions
- Statistical
 - Bag of words
 - Support vector machine
 - Neural network (recurrent/convolutional)
 - Word/sentence embedding

Rule-based approaches

- Pros:
 - High transparency (easy to understand and troubleshoot)
- Cons:
 - Difficult to deal with noise
 - Cannot generalize to unseen input
 - Binary outcome (success or failure, no confidence/probability)

Statistical approaches

- Pros:
 - Can deal with noise
 - Can generalize to unseen input
 - Can estimate confidence/probability
- Cons:
 - Low transparency (difficult to troubleshoot)
 - False positives can be difficult to detect
 - May require plenty of training data
 - May require tedious hyperparameter tuning
 - Training may have high footprint (memory, CPU)

Statistical approaches

- Assumption: For any intent, there are linguistic regularities among the phrases that speakers use to express the intent
- Purpose of classifier: to learn such patterns in order to predict the intent from a sequence of words

- Feature extraction
 - Bag of words
 - Word vectors
 - Sentence vectors
- Classification
 - Naive Bayes
 - Support vector machines
 - Neural networks

Bag of words

- Utterance featurized as vector of frequency measures
- Example: "turn on the light" →
 [... 0 0 0 .7 0 0 0 .8 0 0 0 .7 0 0 .8 ...]
- Vector has one component per word in the dictionary
- The dictionary stems from the training data
- Stemming or lemmatization often used (cats \rightarrow cat)

Bag of words

- Pros
 - Simple
- Cons
 - Doesn't handle polysemy
 - Treats words as independent features
 - Disregards structure, e.g. word order
 - ... but can be addressed with n-grams
 - Can't handle out-of-vocabulary words
 - Vector size grows with size of training data \rightarrow
 - Sparsity
 - Complexity

Word vectors

- Word featurized as vector representing point in a word vector space
- Vector space captures semantic relations between words

Word vectors

- Theoretical basis: Semantically related words have similar contexts (neighbouring words)
- Count-based
 - E.g. Latent Semantic Analysis
 - Reduce dimensionality of co-occurance matrix

Predictive

- E.g. predict word from context
- Often called *neural*, since they use neural networks

Word vectors

- Pros
 - Reflect word "meaning" (in some sense)
 - Enable classification of words outside training vocabulary
 - Fixed vector size
 - Dense representation
 - Pre-trained models available
- Cons
 - Don't handle polysemy
 - May reproduce cultural biases
 - Training custom vectors requires plenty of data and time

Sentence vectors

- New approach for text/intent classification
- Similar to word vectors, but embed whole sentences instead
- Examples:
 - Skip-thoughts
 - StarSpace

- Feature extraction
 - Bag of words
 - Word vectors
 - Sentence vectors
- Classification
 - Naive Bayes
 - Support vector machines
 - Neural networks

Statistical approaches

Entity extraction

- Examples of entities:
 - Named (person names, cities, organizations etc.)
 - Date/time
 - Duration
 - Numbers and ordinals
 - Amount of money
 - Temperature
 - URL
 - Phone number
 - **Domain-specific** (e.g. "home/mobile number" in phone domain)

Entity extraction for DS

- Identify known value
 - "call John"
 - "I need a ticket to Copenhagen"
 - "I want to travel next Monday morning"
- Identify unknown value
 - "I need directions to Engelbrektsgatan 30A"
- Detect propositionality
 - "I want a ticket from Gothenburg to Copenhagen"

Entity extraction challenges

- Not only label word correctly, also parse/interpret!
 - "October 21st at five PM" → datetime("2018-10-21T05:00:00")
- Contextual ambiguity / deixis
 - "next Monday"
- Compositionality / granularity
 - "5000 dollars": single entity (amount of money) or composition of entities (amount, currency)?
 - "5000": amount of money?
- Over-generalization
 - "book a meeting on Monday at fifty o'clock"
 - "give me directions to eh no forget it"
 - "remind me on Saturday, no I mean on Sunday, to ..."

Entity extraction

- Rule-based methods:
 - Keyword spotting
 - Regular expressions
 - CFG
- Statistical methods:
 - Conditional random field (CRF)
 - Probabilistic context-free grammar (PCFG)
Putting it all together

Putting it all together

- Existing services
 - DialogFlow, Wit.ai, IBM Watson Assistant, Amazon Lex, Microsoft Luis, Recast.ai …
- Software libraries
 - NLTK, Rasa NLU, Spacy, Duckling, scikit-learn ...
- Custom implementation / build from scratch

Putting it all together

- Example: Talkamatic Dialogue Manager
 - Rule-based: Grammatical Framework (Parallel Multiple Context-Free Grammar)
 - Statistical: Rasa NLU

Evaluating and improving

- Design:
 - Formulate expected interactions
- Evaluate:
 - Measure NLU performance
 - Perform user testing
- Implement
 - Modify/extend/replace
 - Feature extractor
 - Intent classifier
 - Entity extractor

Measuring NLU performance

- Intents
 - Confusion matrix
 - Cross-validation
 - Precision, recall, accuracy
- Entities
 - Precision, recall, accuracy

Research challenges

- Anaphora
- Literal content
- Benchmarking

Anaphora and common-sense reasoning

User: "my printer won't print my document" System: "Okay, I will try to help you." User: "is it in the wrong paper size?" document

User: "my printer won't print my encrypted PDF" System: "Okay, I will try to help you." User: "is it too old?"